Using Root for Evaluating LAT
Performance

S. Ritz
1 October 2001

First, some history and
observations

* I decided to use ROOT to do the analysis for the AO
response (someone needed to try it out). This was a
significant time investment. Operate on tuples.

+ ROOT is enormously powerful w/ good documentation and
a large and growing user base.

+ ROOT is a foolkit, NOT an analysis platform. We must
still make a user platform!

+ ROOT sometimes handles errors badly (or sometimes
doesn't even tell you!))

My Modes of Using of ROOT and
Related Utilities

» interactive quick look at data, tryout ideas
+ captured analysis

» full analysis

Interactive Mode

* Macro for setup root [0]

.X Setupb.c

{

//setup the canvas and read in the file

TCanvas *cl = new TCanvas("cl", "backgndmaxpdr 143k 6aug",680,0,720,720) ;

cl->Divide(2,2,.01,.01,21); // create 4 pads

// grab the file

f1 = new TFile("backgndmaxpdr 163k 6aug.root") ;
TTree *tl=(TTree*)fl->Get ("PDR/t1l") ;

//

// Change default style for|the statipgtics box
gStyle->SetStatW(0.30) ;
gStyle->SetStatH(0.20) ;
gStyle->SetStatColor (42) ;
gStyle->SetOptStat (10) ;
tl->SetLineWidth(4) ;
tl->SetMarkerStyle(4) ;
tl->SetMarkerSize (0.5) ;
tl->SetMarkerColor (4) ;
tl->SetFillColor(5) ;

(Is there a ready-
made way to
title the canvas

) with the
1 1->cd () ; filename??)

7

cl 1->SetGrid()
cl 2->SetGrid()
cl 3->SetGrid() ;
cl 4->SetGrid() ;
)
)
)

7

cl 1->SetLogy () ;
cl 2->SetLogy (
cl 3->SetLogy (
cl 4->SetLogy () ;
//cl 1->SetLogx() ;
//cl_2->SetLogx () ;
//cl_3->SetLogx () ;
//cl_4->SetLogx() ;
cl->Update() ;

//

}

7

7

backgn?maxpdr_163k_6aug

File Edit /iew Options Inspector Classes

=10 x]

Help

Interactive Mode (2)

* Plots using TTree->Draw() with cuts, eg.,
t1l->Draw (“"ACD DOCA", ”Trig_BitS>3)

Hint: move around pads in
Two ways:
1) center-click with mouse
2) command line, e.g.,

cl 2->cd() ;

can drag out pads to make
larger/smaller/reposition

5

Interactive Mode (3)

» This gets cumbersome quickly, as the
number of cuts grows. Also, BEWARE,
there is some undefined limit to the length
of the command line - it never fails
outright, it just gets flaky!

» Two approaches: (1) another setup file to
define cuts, or (2) eventlists

Exmaple: Define Cuts File

(.x defcuts.c)

{

TCut L1V = " ((vetoword==0||vetoword>127.)&& (ntothit-nhitsiderow3-
nhitsiderow2)<3.) || (Trig Bits&l6)";

TCut L1T = "Trig Bits>3.";

TCut L2T = " (TKR No Tracks>0.&&ACD DOCA>25.) || (Trig Bits&l6)";

TCut tracks = "TKR No Tracks>0.";

}

Then, give the command
t1—>Draw(“ACD_DOCA",LlT&&LlV&&L2T);

Note that you can mix selections, such as
tl->Draw (“ACD DOCA”," (Trig Bitsé&8) &&! (Trig Bitsé&4) "&&L1IT&&L2T&&L1V) ;

BUT the opposite order doesn't work for some reason!
Also, the command character limit seems to apply to TCuts as well, so beware.

Using Event Lists

+ Tell ROOT only to use a subset of the
events. Speeds processing, and reduces
typing.

{

tl->Draw(">>glist2","Trig Bits>3&& (ACD_DOCA>25.&&TKR No Tracks>0&& (ntothit-
nhitsiderow3-nhitsiderow2)<3) || (Trig Bits&l6)");

TEventList *1istL22 = (TEventList*)gDirectory->Get ("glist2");
tl->SetEventList (1istL22) ;

}

All additional Draw commands will display only
the subset of events that are in the
eventlist sastifying these cuts.

Captured Analysis

» It soon becomes important to capture the
selections and plot sequences into a macro.
Place all the interactive commands into
macros to make well-defined sets of plots
that can be saved in a logbook with the
macro. WOULD BE NICE TO HAVE A
MATHCAD- or HIPPO-STYLE “"LIVING
DOCUMENT" to capture the analysis and
the rationale. This document would
integrate the macros and the resulting
plots.

Full Analysis

The final stage is a full analysis, using TTree->MakeClass();
This produces a .h and .c file with useful methods such as
Loop. More sophisticated analyses can be done here,
including branches and detailed numerical calculations that
are not appropriate for command-line type formats.

BEWARE: you have to edit the .h file produced by
MakeClass to point into our PDR/t1 subdirectory. Also,
beware that eventlists defined on the command line are
NOT operative in these classes because the .h reads in the

ROOT tuple file fresh. And REALLY BEWARE:

unlike with macros, you can't just reuse these classes on
other ROOT tuple files. The .h file explicitly opens the
ROOT file used to make the class. You can start a new
analysis session with a different ROOT file on the
command line, load the class you made, and when you run
the loop you'll be operating on the first ROOT filel No
warning, no hint, no nothing! Once understood, it makes
sense, but.. 10

Example: Event Selections

#define genlist2_ cxx
#include "genlist2.h"
#include "TH2.h"
#include "TStyle.h"
#include "TCanvas.h"
void genlist2::Loop ()

// In a Root session, you can do:

// Root > .L genlist2.C
// Root > genlist2 t
// Root > t.GetEntry(12); // Fill t data members with entry number 12
// Root > t.Show() ; // Show values of entry 12
// Root > t.Show(16) ; // Read and show values of entry 16
// Root > t.Loop() ; // Loop on all entries
//
// This is the loop skeleton
// To read only selected branches, Insert statements like:
// METHOD1 :
// fChain->SetBranchStatus ("*",0); // disable all branches
// fChain->SetBranchStatus ("branchname",1); // activate branchname
// METHOD2: replace line
// fChain->GetEntry(i); // read all branches
//by b_branchname->GetEntry(i); //read only this branch
if (fChain == 0) return;

Int_t nentries = Int_t (fChain->GetEntries());
Int_t imax=1000;
Int_t nbytes = 0, nb = 0, iout = 0;
printf ("Run Number Event ID\n");
for (Int_t jentry=0; (jentry<nentries&&iout<imax);jentry++) {
Int t ientry = LoadTree(jentry); //in case of a TChain, ientry is the entry number in the current file

nb = fChain->GetEntry(jentry); nbytes += nb;
if (iout<imax&&genlist2::Trig Bits>3.&&((genlist2::ACD_DOCA>25.&&genlist2::TKR No Tracks>0.&&((genlist2::ntothit-
genlist2::nhitsiderow3-genlist2::nhitsiderow2)<3.)) || (genlist2::Trig Bits&l6))) {

printf (" %1 %1 \n",genlist2::Run Number,genlist2::Event ID);

iout++;

}

} 11

printf ("Total number of events: %i\n",iout);

